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A method of constructing probability amplitudes is presented for cases in which the 
corresponding unitary propagator can be expressed in terms of the Cayley representation. The 
method is most appr,opriate when the Hermitian matrix in the Cayley representation is sparse. 
The algorithm is organized for minimum storage. 0 1986 Academic ~reu, IX 

I. INTRODUCTION 

A unitary matrix may be expressed in, the Cayley representation as 

U=(l+zH)-‘(l-ZH), (1) 

where 1 is the identity matrix, i the square root of minus one, and H is Hermitian. 
If this form is to have any real utility an efficient method of inversion is required. 
The object of the present work is to present the algorithm, CAYLLU 
(Cayley-Lanczos-LU decomposition), which accomplishes this in the special 
situation in which the action of H (which can just as well be considered to be an 
abstract operator) on a vector is simple to describe. H, for example, might be 
represented as a sparse matrix, in which case storage is required only for the non- 
zero elements. 

The time-dependent Schrodinger equation 

can be approximated in this manner. The equation is integrated from t, to t,, and 
Y(t) is replaced by 1/2[!P(t,)+ Y(t,)] in the integrand. Defining x = Y(t2), 

f= !P(ri), and 

(3) 

results in 

(1 + zH)x = (1 - zH)f. (4) 
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Usually, a transformation reducing the size of the diagonal elements is performed 
on X, so that H may depend on time. This approximation is closely related to the 
Crank-Nicolson scheme which has enjoyed great success in many other 
applications. More elaborate expressions for H are possible [ 11. 

The procedure starts with the Lanczos reduction to tridigiagonal form [2]. Sub- 
sequent developments follow closely the work of Paige and Saunders [3] and 
Widlund [4]. There is really nothing special in the present application about the 
Lanczos reduction so that previous work can be consulted with regard to the 
numerical aspects. The Lanczos reduction in exact arithmetic terminates in N steps 
where N is the dimension of the space. In many cases many less steps will suffice. A 
detailed analysis of this aspect of the Lanczos reduction is beyond the scope of the 
present work. Some numerical examples will be given, however, to give some 
indication of this behavior. Refinements in the Lanczos reduction are possible l-5, 6, 
71, particularly in applications to eigen value problems [S]. 

An important feature of the recent developments in the Lanczos method is that 
the algorithms (again provided that H can be conveniently applied to a vector) are 
organized in such a manner that storage requirements have been greatly reduced 
over the original method. The procedures are also organized to provide a means of 
stopping the process, when this is reasonable, before the full N steps have been 
carried out. The procedure is monitored by means of the magnitude of the residual 
error vector 

1 lr, 11 = (r,*, r,)l/*, (5) 

where 

ra = (I - iH)f - (I + zH)x,, (6) 

x, is some approximate solution to Eq. (4) and the ( , ) indicates the usual scalar 
dot product. If x is the true solution to Eq. (4) the error in the approximation is 

e, =x-xx, (7) 

or 

e, = (I + zH)r,. (8) 

From this it readily follows that 

Ile,ll< llr,ll. (9) 

This condition, of course, is only true for the present system. It is a special property 
of Eq. (4) which makes a stopping procedure based on the norm of the residual 
error vector particularly useful. 
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II. THE ALGORITHM CAYLLU 

The Lanczos reduction to trigidiagonal form is accomplished by constructing a 
sequence of orthonormal vectors, vi, by means of the recurrence relation 

with 

Pj+lvj+l = HVj - ujvj - pjvj-, (10) 

and 

vg =o (11) 

(v,*, Vi) = Sjk. (12) 

Since the phase of vi is arbitrary the /Ii’s can be taken to be real and greater than or 
equal to zero. Equation (12) gives 

aj = (v,i, Hvj) (13) 

which shows that the ais are real since H is Hermitian. Besides being matrix 
elements, the /?is can also be regarded as being normalization constants. Taking the 
latter viewpoint, the vector uj+ i is defined by 

u~+~ =Hv~-u~v~-~~v~-, (14) 

so that 

The positive root is chosen for fij+ i. The procedure can be written compactly as 

HV = VT, (16) 

where V is an N x N matrix whose columns consist of the N orthonormal vectors vk 
and T is the symmetric tridigiagonal matrix whose diagonal elements are the ais 
and whose off-diagonals are the /?,.s. That is, 

Tj = aj (17) 

and 

Tj,j+ 1 = Bj* (18) 

The unknown vector x in Eq. (4) is written in terms of a new unknown vector c by 

x=vc. (19) 
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The known vector, f, in Eq. (4) is taken to define /Ii, vi, that is 

f= BlVl 

with 

(20) 

p: = (f*, f). (21) 

In most applications f will be already normalized so that fil can usually be set equal 
to one. Substituting these expressions into Eq. (4) gives 

(I+iT)c=/?i(l-ial)e, -i/?1j12e,, (22) 

where e, and e2 are N-dimensional vectors whose only non-zero elements are in the 
first and second positions, respectively. 

The second part of the CAYLLU algorithm is the LU decomposition of I + iT. 
Writing 

with 

Lu=I+n (23) 

Lj, j- 1 = Cj3 

u, = 1, 

and all other elements zero gives 

p1 =l+iai, (25) 

Pj=l+iaj+@/pj-1, j> 1, (26) 

oi = ijlj, (27) 

tj = ibj+ IlPj- (28) 

These relations give for the real part of pi 

Rep, =l 

Repj=l+ A 
I I 

2 

Pi-1 
RePi- 

(24) 

(29) 

from which it is observed that 

Re pi 2 1 (30) 
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so that the effective pivot in the LU decomposition cannot vanish. Substituting the 
LU decomposition into Eq. (22) gives 

LUc = /3r( 1 - ia,)e, - iB1P2e2. (31) 

The economy of storage is achieved by a device similar to that of Paige and Saun- 
ders [3]. Define 

a=Uc (32) 

and the matrix Y by means of 

YU=V. (33) 

The elements of a are easily obtained to give 

a, = (1 - 4) B,/P,, (34) 

a2 = ( -02a1 - $1/32YP29 (35) 

and 

aj = -ajaj-, I pi, j>2. (36) 

Similarly the columns of Y are obtained to give 

Yl =v1> (37) 

Yj=Vj-Tj-1Yj-1, j> 1. (38) 

Finally the unknown x is given by 

x, = i any”. 
j=l 

(39) 

In exact arithmetic x, becomes exact when n = N, the dimension of the system. The 
algorithm can be truncated at some smaller value of n in which case, by methods 
similar to those of Paige and Saunders the residual is 

llrnll =Bn+1 I% I, n > 2. (40) 

This expression, in view of Eq. (9), provides a means of stopping the procedure at 
some preassigned upper limit on the error in x,. 

The economy of storage comes about by accumulating x, as the uis and y,‘s 
become available. From Eqs. (lo), (12), (13), (14), and (15) it is seen that only a 
few vi’s need be saved fo the Lanczos tridiagonalation and from Eqs. (37) and (39) 
that a similar situation holds for the yis. By means of replacing components of vec- 
tors no longer needed by components of new vectors and careful organization, x, 
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can be computed using, besides x, itself, only four other vectors. Another 
interesting point is that Eq. (22) is actually of the same Cayley form as is Eq. (4) so 
that in the tridiagonalization the length of x, will only be affected by errors in V. 
This, in fact, was the reason for the choice of vi made in Eq. (20). 

III. NUMERICAL EXAMPLE 

The unitary nature of the system provides some simple means of checking. The 
length of x, should equal that off in Eq. (4), but the algorithm has built in features 
that decrease the sensitivity of this test. Another approximation xb can be found to 
a similar system involving a vector f orthogonal to f and the corresponding 
orthogonality of x, and XL tested. Finally if H and f are real, replacing f by x,* in 
Eq. (4) and applying the algorithm a second time should return the original f vec- 
tor. These tests have all been made with satisfactory results. 

The most useful test, in view of Eq. (9) involves llr,ll. A reasonable tolerance, 
E, is assigned and the procedure stopped when 11 r,ll <E. If the number of 
iterations, K, is significantly less than N, particularly for a system of the size to be 
discussed, reasonable assurance can be had that the process is working properly. A 
further check has been the good agreement between 11 ra 11 computed from Eqs. (6) 
and (40). 

The test problem has been taken to be a very simple system with two degrees of 
freedom. For clarity of presentation the index on x or f will be made double. That 
is, 

XI + xjk (41) 

with 

Z=j+k(N- l), (42) 

where N2 is the dimension of the system. In the example, N is 80. H is taken to be 
real and to have the simple form 

Hj,k;j+ l,k = Hj+ 1,k; jk = g(j)‘, (42) 

Hj/c;j,k + 1 = Hj,k + 1, jk = g(k)“, (43) 

and all other elements of H are zero. For q = l/2 the system is roughly similar to 
two coupled harmonic oscillators. The vector initially has all components equal to 
zero except j = j0 and k = k,, . 

Results are shown in Table I. These are calculations which from all appearances 
are entirely adequate and are intended to illustrate situations in which the 
algorithm works properly. In many cases the algorithm was applied successively, 
the number of times being indicated by Nstcps. The average number of individual 
iterations (n in Eq. 39) required to reduce 11 rn 11 below E is denoted by K,,,. This 

581/66/l-15 
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TABLE I 

Performance of CAYLLU 

j0 ko 

1 2 
80 80 
1 2 

80 80 
1 2 

80 80 
1 2 

80 80 
1 2 

80 80 
1 2 

80 80 
1 2 

80 80 
1 2 

80 80 

1 
1 
1 
1 
1 
1 
1 
1 
1 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0.01 
0.01 
0.02 
0.02 
0.04 
0.04 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.5 
0.5 
0.5 
0.5 

7 
7 
7 
7 
7 
7 
7 
7 
5 
5 
7 
7 
7 
7 
5 
5 

12 100 4.1( -3) 
49 100 2.5( -5) 
26 50 4.1(-3) 
94 50 5.7( -4) 
73 25 4.1(-3) 

183 25 1.2( -3) 
97 1 0.80 

443 1 0.64 
34 1 0.80 

329 1 0.64 
24 10 3.5( -3) 
58 10 5.8( -2) 

167 1 5.9( -2) 
271 1 0.44 
115 1 5.9( -2) 
204 1 0.44 

a The number in parentheses is the power of 10 by which the number is to be multiplied. 

number is seen to be well below N*. The final column in Table I labelled P(j,, k,) is 
the “probability” (i.e., u,$rjk) that the initial state will be occupied after Nsteps. That 
P(j,, k,) is small in many cases is indicative of “strong coupling.” The converse, 
however, need not be true, since in Eq. (4) if H becomes very large in some sense 
compared to the unit matrix I, x becomes nearly equal to f. A few cases 
approaching this behavior can be seen in Table I. 
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